BIDANG PERUBATAN
Kini, ramai yang mengetahui secara umum alat pengimejan bioperubatan (biomedical imaging) dan mungkin pernah melalui prosedur yang menggunakan alat tersebut seperti imbasan Sinar-X dan juga ultrasound. Namun mungkin tidak ramai yang mengetahui dengan mendalam tahap teknologi yang membolehkan alat tersebut berfungsi, manfaat yang diperolehi daripadanya serta perkembangan peralatan sedemikian yang merupakan gabungan pelbagai disiplin bidang sains dan teknologi dalam penciptaannya. Secara ringkas tentang teknologi pengimejan dalam perubatan, yang lazimnya disebut sebagai radiologi. Istilah radiologi digunakan disebabkan teknologi ini melibatkan penggunaan radiasi. Walaubagaimanapun tidak semua radiasi bersifat mengion seperti Sinar-X. Contohnya seperti radiasi ultrasound dan Magnetic Resonance Imaging (MRI) yang tidak bersifat mengion (bertukar kepada ion, spt: Molekul kuprum sulfat akan ~ menjadi ion kuprum dan ion sulfat).
Antara manfaat umum terbesar pengimejan perubatan adalah membolehkan diagnosis dilakukan tanpa sebarang prosedur yang memerlukan pembedahan. Sebelum adanya teknologi tersebut, diagnosis hanya dapat dibuat secara tidak langsung melalui gejala atau simptom penyakit ataupun melalui biopsi (analisis sampel daripada badan). Kadangkala situasi keadaan badan yang tidak normal hanya diketahui setelah melalui sesuatu pembedahan. Diagnosis sedemikian masih wujud dan masih digunakan, namun pengimejan bioperubatan membolehkan penyakit kronik seperti kanser diketahui lebih awal.
Pengimejan bioperubatan moden boleh dikatakan bermula dengan penemuan Sinar-X oleh W.C. Roentgen pada tahun 1895 (Sinar-X juga dinamakan Sinar Roentgen). Sinar-X adalah gelombang elektromagnet yang mempunyai panjang gelombang antara 0.01 hingga 10 nanometer (nm) dan tenaga antara 120 voltan elektron (eV) hingga 120 (keV). Maka dari segi panjang gelombang ia berada antara Sinar Gamma yang lebih bertenaga dan Sinar Ultraungu (UV). Penemuan ini melayakkan Roentgen menerima Hadiah Nobel pertama dalam bidang fizik pada tahun 1901.
Sinar-X yang digunakan untuk tujuan pengimejan bioperubatan adalah sinar ’berkekuatan tinggi’ yang mempunyai tenaga antara 12 hingga 120 kV. Pengimejan Sinar-X lazimnya dibuat dengan satu sumber sinaran dan pengesan terdiri daripada filem foto, sintilator ataupun yang terkini diod semikonduktor. Bahagian badan yang lebih tumpat seperti tulang akan kelihatan lebih cerah kerana lebih menyerap Sinar-X sebaliknya bahagian yang kurang tumpat seperti otot, lemak dan udara akan kelihatan gelap. Proses ini juga disebut sebagai radiografi unjuran kerana imej tulang dan organ akan bertindih antara satu sama lain. (Ashrani Aizuddin, 2011)
Selain daripada itu, radionuklida buatan pencetus perubatan nuklear. Perubatan nuklear melibatkan sumbangan daripada saintis dalam pelbagai bidang yang terdiri daripada pakar-pakar dalam bidang fizik, kimia, kejuruteraan dan perubatan. Bidang perubatan berasaskan teknologi nuklear boleh dikatakan bermula dengan penemuan dan hipotesis bahawa bahan seperti aluminium boleh diubah supaya ia membebaskan radiasi. Ia dinamakan radionuklida buatan (artificial radionucleid) dan penemuan ini diterbitkan oleh pasangan Frederic dan Irene Joliot-Curie pada bulan Februari 1934 dalam penerbitan jurnal terkenal iaitu Nature. Mereka mendapat inspirasi dari kajian terdahulu yang dimulakan oleh Roentgen, H. Becquerel dan ibu-bapa Irene sendiri iaitu pasangan Pierre dan Irene Curie. Becquerel dan pasangan Curie telah menerima hadiah Nobel dalam bidang fizik pada tahun 1903. Pasangan Joliot-Curie mengulangi pencapaian ibu-bapa dan mertua dengan penerimaan hadiah Nobel dalam bidang kimia pada tahun 1935 atas penemuan radionuklida buatan tersebut.
Antara radionuklida yang terawal digunakan adalah iodin-131. Ia telah dipopularkan oleh sebuah rencana dalam Jurnal Persatuan Perubatan Amerika pada 7 Disember 1946 tentang rawatan metastasis kanser kelenjar tiroid pada seorang pesakit. Seterusnya technetium-99m yang ditemui pada tahun 1937 mula dipopularkan pada tahun 1960-an dan menjadi radionuklida yang paling banyak digunakan dalam perubatan nuklear sehingga hari ini. Seperti radiografi unjuran menggunakan Sinar-X, dalam pengimejan perubatan nuklear terdapat sebuah pengesan yang dipanggil kamera sintilasi/gamma. Kamera gamma tercipta pada tahun 1960-an oleh H. Anger, yang membawa kepada nama alternatifnya sebagai kamera Anger. Proses pembentukan imej ini dinamakan sebagai sintigrafi (scintigraphy). Ia juga merupakan imej unjuran, maka imej tisu-tisu yang menyerap radionuklida akan bertindih antara satu sama lain. (Ashrani Aizuddin, 2011)
Di dalam bidang perubatan nuklear, tomografi turut digunakan oleh D.E. Kuhl pada tahun 1960-an untuk membentuk imej. Dengan memutarkan sebuah pengesan (yang sama dengan kamera gamma) dalam bulatan sekitar pesakit, imej badan pada satah bulatan tersebut dapat dibentuk dan seterusnya satah-satah berlainan disusun untuk membentuk imej 3 dimensi. Ini dinamakanTomografi Terhitung Pembebasan Foton Tunggal (single photon emission computed tomography, SPECT).
Pada masa yang sama, Kuhl turut menggunakan radionuklida yang membebaskan positron (anti-zarah kepada elektron). Apabila positron bertemu dengan elektron, ia akan membentuk positronium sementara dalam suatu tempoh, sebelum kedua-duanya akan saling memusnah atau membinasa antara satu sama lain. Pembinasaan ini membebaskan dua foton sinar gamma pada arah yang bertentangan antara satu sama lain. Kedua-dua foton ini akan dikesan oleh dua pengesan yang bertentangan pada bulatan sekitar pesakit. Seterusnya pemprosesan secara tomografi dibuat untuk membentuk imej. Walau bagaimanapun, disebabkan adanya dua sinar gamma dibebaskan pada arah bertentangan daripada satu-satu lokasi, penganggaran lokasi tisu yang menyerap radionuklida tersebut adalah lebih jitu berbanding dengan SPECT. Kaedah ini dinamakan Tomografi Pembebasan Positron (positron emission tomography – PET).
0 comments :
Post a Comment